An ‘Achilles' Heel’ for Kinase-Driven Leukemias?

Article

Kinase oncoproteins and growth factors both activate the proto-oncogene c-FOS and DUSP1, allowing the persistence of residual leukemia cell populations despite tyrosine kinase inhibitor therapy.

Kinase oncoproteins and growth factors both activate the proto-oncogene c-FOS and DUSP1, allowing the persistence of residual leukemia cell populations despite tyrosine kinase inhibitor (TKI) therapy, according to findings from a new preclinical study published in Nature Medicine.

Leukemia stem cells appear to become addicted to elevated c-FOS and DUSP1 during TKI therapy, which could lead to intrinsic TKI resistance and eventual relapse, they concluded.

“Our data demonstrate that c-FOS and DUSP1 expression levels determine the threshold of TKI efficacy, such that growth factor-induced expression of c-FOS and DUSP1 confers intrinsic resistance to TKI therapy in a wide-ranging set of leukemias, and might represent a unifying Achilles’ heel of kinase-driven cancers,” reported study co-author Mohammad Azam, PhD, Cincinnati Children’s Hospital Medical Center in Cincinnati, and colleagues. “

TKI therapy is not curative for cancer, the authors noted; persisting cancer cell populations, known as minimal residual disease (MRD), eventually lead to relapse.

The research team experimentally manipulated expression of c-FOS and DUSP1 in animal models, in an effort to overcome this intrinsic resistance and destroy residual tumor cells after TKI therapy.

“Genetic deletion of Fos and Dusp1 suppressed tumor growth in a BCR-ABL fusion protein kinase-induced mouse model of chronic myeloid leukemia (CML),” they reported. “Pharmacological inhibition of c-FOS, DUSP1 and BCR-ABL eradicated MRD in multiple in vivo models, as well as in mice xenotransplanted with patient-derived primary CML cells.”

They subsequently demonstrated that growth factor signaling similarly induces Fos and DUSP1 expression and underlies TKI resistance in animal models of other leukemias, such as BCR-ABL-induced B-cell acute lymphoblastic leukemia (B-ALL).

The team also showed that higher FOS and DUSP1 levels induced anti-apoptosis gene expression, and that these and pro-survival genes’ expression could be suppressed with FOS and DUSP1 inhibitors.

“Taken together, these data provide evidence that higher levels of Fos and Dusp1 are required to maintain growth factor-induced expression of pro-survival and anti-apoptotic genes,” they concluded.

Recent Videos
Certain bridging therapies and abundant steroid use may complicate the T-cell collection process during CAR T therapy.
Educating community practices on CAR T referral and sequencing treatment strategies may help increase CAR T utilization.
Harmonizing protocols across the health care system may bolster the feasibility of giving bispecifics to those with lymphoma in a community setting.
Establishment of an AYA Lymphoma Consortium has facilitated a process to better understand and address gaps in knowledge for this patient group.
Adult and pediatric oncology collaboration in assessing nivolumab in advanced Hodgkin lymphoma facilitated the phase 3 SWOG S1826 findings.
Treatment paradigms differ between adult and pediatric oncologists when treating young adults with lymphoma.
No evidence indicates synergistic toxicity when combining radiation with CAR T-cell therapy in this population, according to Timothy Robinson, MD, PhD.
The addition of radiotherapy to CAR T-cell therapy may particularly benefit patients with localized disease, according to Timothy Robinson, MD, PhD.
Timothy Robinson, MD, PhD, discusses how radiation may play a role as bridging therapy to CAR T-cell therapy for patients with relapsed/refractory DLBCL.
A panel of 3 experts on CML
Related Content