scout

Authors

Latest Article

Vaccine Therapy for Patients With Melanoma

Investigation into the therapeutic use of vaccines in patients with metastatic melanoma is critically important because of the lack of effective conventional modalities. The most extensively studied melanoma vaccines in clinical trials are whole-cell preparations or cell lysates that contain multiple antigens capable of stimulating an immune response. Unfortunately, in the majority of studies, immune responses to these vaccines have not translated into a survival advantage. Advances in tumor cell immunology have led to the identification of candidate tumor cell antigens that can stimulate an immune response; this, in turn, has allowed for refinements in vaccine design. However, the exact tumor antigens that should be targeted with a specific vaccine are unknown. The univalent antigen vaccines, which have greater purity, ease of manufacturing, and reproducibility compared with polyvalent vaccines, may suffer from poorer efficacy due to immunoselection and appearance of antigen-negative clones within the tumor. Novel approaches to vaccine design using gene transfection with cytokines and dendritic cells are all promising. However, the induction of immune responses does not necessarily confer a therapeutic benefit. Therefore, these elegant newer strategies need to be studied in carefully designed clinical trials so that outcomes can be compared objectively with standard therapy. If survival is improved with these vaccine approaches, their ease of administration and lack of toxicity will firmly entrench active specific vaccine immunotherapy as a standard modality in the treatment of the melanoma patient.[ONCOLOGY 13(11):1561-1574, 1999].

Latest Article

Topoisomerase I Inhibitors in the Combined-Modality Therapy of Lung Cancer

Locally advanced non–small-cell lung cancer represents 30% to 40%of all pulmonary malignancies. Most patients will die of the diseaseafter aggressive contemporary treatments. Therefore, significant improvementin therapeutic methods must be implemented to improveoverall survival rates. The arrival of a new generation of chemotherapeuticagents-including the taxanes, gemcitabine (Gemzar), andtopoisomerase inhibitors such as irinotecan (Camptosar) and topotecan(Hycamtin)-offers the hope of significant advances in the treatmentof lung cancer. Irinotecan and topotecan are camptothecin derivativesthat inhibit topoisomerase I enzyme. It is believed that topoisomerase Iinhibitors stabilize a DNA/topoisomerase I complex and interact withreplication machinery to cause cell death. A significant amount of datademonstrates that these topoisomerase I inhibitors also act asradiosensitizers. With the increasing data that support concurrentchemoradiation treatment for malignancies, including lung cancer andhead and neck cancers, there is an impetus to pursue the additionaldrugs that may potentially improve local control and survival. Irinotecanis undergoing early clinical trials in the combined-modality setting inseveral different disease sites. This paper will review the data on therole of camptothecin derivatives as a radiosensitizer and as a componentof combined-modality therapy for lung cancer. It is hoped thatnewer treatment strategies, like the combination of radiation andtopoisomerase I inhibitors, will have a significant impact on cure ratesin the future.