Learning the IORT Mechanism, Potential Advantages in Cancer Surgery

Commentary
Video

Intraoperative radiation therapy may allow surgical and radiation oncologists to collaboratively visualize at-risk areas in patients with cancer.

CancerNetwork® spoke with Natalie A. Lockney, MD, and Kamran Idrees, MD, MSCI, MMHC, FACS, about the mechanism of intraoperative radiation therapy (IORT) as well as the potential advantages it may offer to patients with cancer compared with standard radiation treatments.

Lockney, an assistant professor in Radiation Oncology and the program director for the radiation oncology medical residency at Vanderbilt University Medical Center, stated that IORT may be applicable across several patient populations. According to Lockney, IORT has previously demonstrated utility in pancreatic cancer, sarcoma, and rectal cancer, among other types.

Idrees is the chief of the Division of Surgical Oncology & Endocrine Surgery, an associate professor of Surgery, an Ingram Associate Professor of Cancer Research, and director of Pancreatic and Gastro-Intestinal Surgical Oncology at Vanderbilt University Medical Center.

Transcript:

Lockney:

Intraoperative radiation therapy, IORT, is a form of radiation that is delivered intraoperatively as a 1-time dose. After the surgeon resects the tumor, the surgeon and radiation oncologist identify the area at risk, or the positive margin, and insert an applicator into the tumor bed to deliver the radiation therapy.

The key benefits of delivering IORT while in the operating room are No. 1: The surgeon and radiation oncologist can visualize the area at risk in real-time together. No. 2: Critical nearby structures such as the small bowel, stomach, etc., can be manually retracted away from the radiotherapy field to safely allow delivery of higher doses of radiation therapy than possible with standard external beam radiation approaches. Another additional advantage is patient convenience because the radiation is delivered while they’re under anesthesia, which can be particularly helpful for patients who may live long distances from a radiation center.

Idrees:

What tumors would benefit from interoperable radiation therapy?

Lockney:

IORT has been used for many different cancer types. We will focus on pancreatic cancer. However, it’s also commonly used for rectal cancer, some sarcomas, head and neck cancer, and gynecological malignancies.

Recent Videos
Harmonizing protocols across the health care system may bolster the feasibility of giving bispecifics to those with lymphoma in a community setting.
Patients who face smoking stigma, perceive a lack of insurance, or have other low-dose CT related concerns may benefit from blood testing for lung cancer.
Establishment of an AYA Lymphoma Consortium has facilitated a process to better understand and address gaps in knowledge for this patient group.
Adult and pediatric oncology collaboration in assessing nivolumab in advanced Hodgkin lymphoma facilitated the phase 3 SWOG S1826 findings.
Treatment paradigms differ between adult and pediatric oncologists when treating young adults with lymphoma.
Differences in pancreatic cancer responses to treatment elicits a need to better educate patients on expectations in treatment, particularly chemotherapy.
Increasing patient awareness of modifiable risk factors for pancreatic cancer may help mitigate incidence of pancreatic cancers.
It may be crucial to test every patient for markers such as BRAF V600E mutations, NRG1 fusions, and KRAS G12C mutations to help manage pancreatic cancers.
Tanios S. Bekaii-Saab, MD, emphasizes the idea of moving targeted therapies to earlier lines of treatment to further improve outcomes in pancreatic cancer.
The Together for Supportive Cancer Care coalition may advance the national conversation in ensuring comprehensive care for all patients with cancer.
Related Content