Marker Could Help Diagnose Early Pancreatic Cancer

Article

Researchers have discovered a protein encoded by the GPC1 gene present on cancer exomes that may be used as a diagnostic tool to detect early pancreatic cancer.

Researchers have discovered a protein encoded by the glypican-1 (GPC1) gene present on cancer exomes that may be used as part of a potential noninvasive diagnostic and screening tool to detect early pancreatic cancer.

In the study, published in Nature, Raghu Kalluri, MD, PhD, chair of the department of cancer biology at the University of Texas MD Anderson Cancer Center, and colleagues isolated and observed GPC1-enriched circulating exosomes, which they called GPC1+ crExos, using flow cytometry from the blood of patients with pancreatic cancer.

The researchers found that GPC1+ crExos were present in the blood of patients with pancreatic cancer with absolute specificity and sensitivity, clearly distinguishing these patients from healthy patients or those with benign pancreatic disease.

In addition, the study showed that levels of GPC1+ crExos were significantly lower in patients after surgical resection of the tumor.

“GPC1+ crExos can be detected and isolated in blood samples that were stored in freezers almost 30 years ago, unlike circulating tumor cells (CTCs) that require large amounts of fresh blood,” said Kalluri in a prepared statement. “DNA, RNA, and proteins can be isolated from cancer exosomes isolated from stored specimen for further genetic and biological analyses. Therefore, cancer exosomes are not just a biomarker but isolating them provides a trove of cancer-specific information.”

The researchers also conducted studies in mice to determine the value of GPC1+ crExos as a screening biomarker. They found that the presence of GPC1+ crExos reliably detected pancreatic intraepithelial lesions in mice despite negative results for pancreatic disease found with MRI screening.

“Routine screening of the general population for pancreatic cancer using MRIs or CTs would be prohibitively expensive with the likelihood for many false positives,” said David Piwnica-Worms, MD, PhD, chair of the department of cancer systems imaging at MD Anderson Cancer Center, in a prepared statement. “Our study suggests the potential for GPC1+ crExos as a detection and monitoring tool for pancreatic cancer in combination with imaging, with an emphasis on its application in early detection.”

Recent Videos
Differences in pancreatic cancer responses to treatment elicits a need to better educate patients on expectations in treatment, particularly chemotherapy.
Increasing patient awareness of modifiable risk factors for pancreatic cancer may help mitigate incidence of pancreatic cancers.
It may be crucial to test every patient for markers such as BRAF V600E mutations, NRG1 fusions, and KRAS G12C mutations to help manage pancreatic cancers.
Tanios S. Bekaii-Saab, MD, emphasizes the idea of moving targeted therapies to earlier lines of treatment to further improve outcomes in pancreatic cancer.
As patients are nearing the end of life, different management strategies, such as opioids, may be needed to help mitigate pain or fatigue.
Kelley A. Rone, DNP, RN, AGNP-c, highlights the importance of having end-of-life discussions early in a patient’s cancer treatment course.
Experts from Vanderbilt University Medical Center emphasize gathering a second opinion to determine if a tumor is resectable in patients with pancreatic cancer.
Experts from Vanderbilt University Medical Center discuss the use of intraoperative radiation therapy in a 64-year-old patient with pancreatic cancer.
Investigators are assessing the use of IORT in patients with borderline resectable or unresectable pancreatic cancer as part of the phase 2 PACER trial.
Kamran Idrees, MD, MSCI, MMHC, FACS, discusses how factors such as vessel involvement can influence the decision to proceed with surgical therapy.
Related Content