Latest News

Phase 3 CROWN trial findings suggest that patients with ALK-positive NSCLC may maintain efficacy even after reducing lorlatinib dosing to mitigate AEs.
Elucidating Lorlatinib Benefit, ALK TKI Sequencing in ALK-Positive NSCLC

April 14th 2025

Phase 3 CROWN trial findings suggest that patients with ALK-positive NSCLC may maintain efficacy even after reducing lorlatinib dosing to mitigate AEs.

Surufatinib/Toripalimab Shows Encouraging Activity in NSCLC and SCLC
Surufatinib/Toripalimab Shows Encouraging Activity in NSCLC and SCLC

April 8th 2025

A futility analysis showed that ociperlimab was unlikely to reach the primary end point of overall survival as part of the phase 3 AdvanTIG-302 trial.
Developers Terminate Clinical Program for Ociperlimab in Lung Cancer

April 3rd 2025

AI, Immunotherapy, More Key Lung Cancer Advances Highlighted at 2025 ELCC
AI, Immunotherapy, More Key Lung Cancer Advances Highlighted at 2025 ELCC

April 1st 2025

A stronger commitment to tobacco control at the local, state, and federal levels may further improve progress in preventing smoking-related mortality.
Tobacco Control Helps Avert Millions of Lung Cancer Deaths

March 27th 2025

More News


Site Logo

State of the Art in Lung Cancer: A Glass One-Quarter Full?

February 1st 2007

Surgery remains the initial treatment for patients with early-stage non-small-cell lung cancer (NSCLC). Additional therapy is necessary because of high rates of distant and local disease recurrence after surgical resection. Early trials of adjuvant chemotherapy and postoperative radiation were often plagued by small patient sample size, inadequate surgical staging, and ineffective or antiquated treatment. A 1995 meta-analysis found a nonsignificant reduction in risk of death for postoperative cisplatin-based chemotherapy. Since then, a new generation of randomized phase III trials have been conducted, some of which have reported a benefit for chemotherapy in the adjuvant setting. The role of postoperative radiation therapy remains to be defined. It may not be beneficial in early-stage NSCLC but still may have utility in stage IIIA disease. Improvement in survival outcomes from adjuvant treatment are likely to result from the evaluation of novel agents, identification of tumor markers predictive of disease relapse, and definition of factors that determine sensitivity to therapeutic agents. Some of the molecularly targeted agents such as the angiogenesis and epidermal growth factor receptor inhibitors are being incorporated into clinical trials. Preliminary results with gene-expression profiles and lung cancer proteomics have been promising. These techniques may be used to create prediction models to identify patients at risk for disease relapse. Molecular markers such as ERCC1 may determine response to treatment. All of these innovations will hopefully increase cure rates for lung cancer patients by maximizing the efficacy of adjuvant therapy.


Site Logo

Non-Small-Cell Lung Cancer Adjuvant Therapy: Translating Data Into Reality

February 1st 2007

Surgery remains the initial treatment for patients with early-stage non-small-cell lung cancer (NSCLC). Additional therapy is necessary because of high rates of distant and local disease recurrence after surgical resection. Early trials of adjuvant chemotherapy and postoperative radiation were often plagued by small patient sample size, inadequate surgical staging, and ineffective or antiquated treatment. A 1995 meta-analysis found a nonsignificant reduction in risk of death for postoperative cisplatin-based chemotherapy. Since then, a new generation of randomized phase III trials have been conducted, some of which have reported a benefit for chemotherapy in the adjuvant setting. The role of postoperative radiation therapy remains to be defined. It may not be beneficial in early-stage NSCLC but still may have utility in stage IIIA disease. Improvement in survival outcomes from adjuvant treatment are likely to result from the evaluation of novel agents, identification of tumor markers predictive of disease relapse, and definition of factors that determine sensitivity to therapeutic agents. Some of the molecularly targeted agents such as the angiogenesis and epidermal growth factor receptor inhibitors are being incorporated into clinical trials. Preliminary results with gene-expression profiles and lung cancer proteomics have been promising. These techniques may be used to create prediction models to identify patients at risk for disease relapse. Molecular markers such as ERCC1 may determine response to treatment. All of these innovations will hopefully increase cure rates for lung cancer patients by maximizing the efficacy of adjuvant therapy.


Site Logo

Adjuvant Treatment of Non-Small-Cell Lung Cancer: How Do We Improve the Cure Rates Further?

February 1st 2007

Surgery remains the initial treatment for patients with early-stage non-small-cell lung cancer (NSCLC). Additional therapy is necessary because of high rates of distant and local disease recurrence after surgical resection. Early trials of adjuvant chemotherapy and postoperative radiation were often plagued by small patient sample size, inadequate surgical staging, and ineffective or antiquated treatment. A 1995 meta-analysis found a nonsignificant reduction in risk of death for postoperative cisplatin-based chemotherapy. Since then, a new generation of randomized phase III trials have been conducted, some of which have reported a benefit for chemotherapy in the adjuvant setting. The role of postoperative radiation therapy remains to be defined. It may not be beneficial in early-stage NSCLC but still may have utility in stage IIIA disease. Improvement in survival outcomes from adjuvant treatment are likely to result from the evaluation of novel agents, identification of tumor markers predictive of disease relapse, and definition of factors that determine sensitivity to therapeutic agents. Some of the molecularly targeted agents such as the angiogenesis and epidermal growth factor receptor inhibitors are being incorporated into clinical trials. Preliminary results with gene-expression profiles and lung cancer proteomics have been promising. These techniques may be used to create prediction models to identify patients at risk for disease relapse. Molecular markers such as ERCC1 may determine response to treatment. All of these innovations will hopefully increase cure rates for lung cancer patients by maximizing the efficacy of adjuvant therapy.