Moving Novel Brain Cancer Treatment Classes Down the Development Pipeline

Commentary
Video

Shwetal Mehta, PhD, describes efforts regarding the development of protein degraders and antibody-drug conjugates in the neuro-oncology field.

CancerNetwork® spoke with Shwetal Mehta, PhD, about her institution’s early phase clinical trial program as well as her excitement in moving new drug classes into later phases of research for patients with brain cancer.

Mehta, the deputy director and pre-clinical core leader at the Ivy Brain Tumor Center of Barrow Neurological Institute in Phoenix, Arizona, explained how her group’s early phase program implements a pharmacokinetic- and pharmacodynamic-driven strategy to optimize the amount of time and resources dedicated to studying therapeutic agents of interest. Additionally, she outlined her institution’s aim to adapt treatment modalities such as proteolysis targeting chimeras (PROTACs) and antibody-drug conjugates—which have demonstrated efficacy in other tumor types—to the neuro-oncology field.

Transcript:

When we started at the Ivy Brain Tumor Center 7 years ago, we [had] the largest early phase clinical trials program. Our goal was to move drugs through this pipeline using pharmacokinetics- and pharmacodynamics-based approaches to identify drugs that have activity in the brain, move those good drugs forward, and then also weed out the ones that are not good; [the ones] where we are not seeing any activity. [We do this so] that we in the community don’t spend too much time, patience, and resources on these drugs.

We’ve done that. Now, over the last year, we’ve seen that we were capable of not just doing these early phase clinical trials [but entering] this phase of moving drugs into phase 3 [studies]. That’s exciting. For us, right now, we are excited about these new classes of agents that are within the space, like the PROTACs, the protein degraders, ADCs [antibody-drug conjugates], which have shown amazing promise in the rest of the oncology space. Neuro-oncology is only now trying to test these things out, and we are so uniquely situated to ask some of the important questions for these types of molecules. That’s where our focus is going to be in the coming years, and we’re very excited about that.

Recent Videos
Artificial intelligence may have the potential to enrich pathology practices to help identify aspects of tumor biology not seen with the human eye.
Efficacy results from the MASAI trial preceded the creation of the UK-funded EDITH trial, assessing 5 AI platforms in 700,000 women undergoing mammography.
Combining sotorasib with panitumumab may reduce the burden of disease in patients with KRAS G12C-mutated metastatic colorectal cancer.
Findings from the phase 2b ReNeu trial show significant pain relief with mirdametinib in adult and pediatric patients with NF1-PN.
Findings from the CodeBreak 300 study have cemented sotorasib/panitumumab as a third-line treatment option for KRAS G12C-mutated colorectal cancer.
The dispersible tablet formulation of mirdametinib may offer convenience to patients with NF1-PN and difficulty with swallowing pills.
Related Content