scout

Authors

Latest Article

Current Therapies for Advanced Colorectal Cancer

Significant advances have been made in the treatment of advancedcolorectal cancer over the past 5 years, namely due to the introductionof three novel cytotoxic agents-capecitabine (Xeloda), irinotecan(Camptosar), and oxaliplatin (Eloxatin)-and the recent approval oftwo biologic agents-bevacizumab (Avastin) and cetuximab (Erbitux).During this time period, the median survival of patients with advanced,metastatic disease has gone from 10 to 12 months to nearly 24 months.Intense efforts have focused on identifying novel targeted therapies thattarget specific growth factor receptors, critical signal transduction pathways,and/or key pathways that mediate the process of angiogenesis.Recent clinical trial results suggest that the anti-VEGF antibodybevacizumab can be safely and effectively used in combination witheach of the active anticancer agents used in colorectal cancer. Despitethe development of active combination regimens, significant improvementsin the actual cure rate have not yet been achieved. Combinationregimens with activity in advanced disease are being evaluated in theadjuvant and neoadjuvant settings. The goal is to integrate these targetedstrategies into standard chemotherapy regimens so as to advancethe therapeutic options for the treatment of advanced colorectal cancer.Finally, intense efforts are attempting to identify the critical molecularbiomarkers that can be used to predict for either clinicalresponse to chemotherapy and/or targeted therapies and/or the drugspecificside effects. The goal of such studies is to facilitate the evolutionof empiric chemotherapy to individually tailored treatments forpatients with colorectal cancer.

Latest Article

Melanoma Vaccines: What We Know So Far

Vaccines are a promising but still experimental treatment for melanoma.They are intended to stimulate immune responses against melanomaand by so doing, increase resistance against and slow the progressionof this cancer. Key requirements for vaccines to be effectiveare that they contain antigens that can stimulate tumor-protective immuneresponses and that some of these antigens are present on thetumor to be treated. Unfortunately, these antigens are still not known.To circumvent this problem, polyvalent vaccines can be constructedcontaining a broad array of melanoma-associated antigens. Severalstrategies are available to construct such polyvalent vaccines; each hasadvantages and disadvantages. Clinical trials have shown that vaccinesare safe to use and have much less toxicity than current therapy formelanoma. Vaccines can stimulate both antibody and T-cell responsesagainst melanoma, with the type of response induced, its frequency,and its magnitude depending on the vaccine and the adjuvant agentused. A growing body of evidence suggests that vaccines can be clinicallyeffective. This evidence includes correlations between vaccineinducedantibody or T-cell responses and improved clinical outcome,clearance of melanoma markers from the circulation, improved survivalcompared to historical controls, and most convincingly, two randomizedtrials in which the recurrence-free survival of vaccine-treatedpatients was significantly longer than that of control groups.